3.72 \(\int \frac {1}{(a x+b x^3)^{3/2}} \, dx\)

Optimal. Leaf size=273 \[ \frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{7/4} \sqrt {a x+b x^3}}-\frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{7/4} \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {3 \sqrt {b} x \left (a+b x^2\right )}{a^2 \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}+\frac {1}{a \sqrt {a x+b x^3}} \]

[Out]

1/a/(b*x^3+a*x)^(1/2)+3*x*(b*x^2+a)*b^(1/2)/a^2/(a^(1/2)+x*b^(1/2))/(b*x^3+a*x)^(1/2)-3*(b*x^3+a*x)^(1/2)/a^2/
x-3*b^(1/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))*EllipticE(
sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))
^2)^(1/2)/a^(7/4)/(b*x^3+a*x)^(1/2)+3/2*b^(1/4)*(cos(2*arctan(b^(1/4)*x^(1/2)/a^(1/4)))^2)^(1/2)/cos(2*arctan(
b^(1/4)*x^(1/2)/a^(1/4)))*EllipticF(sin(2*arctan(b^(1/4)*x^(1/2)/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*x^
(1/2)*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/a^(7/4)/(b*x^3+a*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 273, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.538, Rules used = {2006, 2025, 2032, 329, 305, 220, 1196} \[ \frac {3 \sqrt {b} x \left (a+b x^2\right )}{a^2 \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{7/4} \sqrt {a x+b x^3}}-\frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{7/4} \sqrt {a x+b x^3}}+\frac {1}{a \sqrt {a x+b x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(a*x + b*x^3)^(-3/2),x]

[Out]

1/(a*Sqrt[a*x + b*x^3]) + (3*Sqrt[b]*x*(a + b*x^2))/(a^2*(Sqrt[a] + Sqrt[b]*x)*Sqrt[a*x + b*x^3]) - (3*Sqrt[a*
x + b*x^3])/(a^2*x) - (3*b^(1/4)*Sqrt[x]*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*Ellip
ticE[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(a^(7/4)*Sqrt[a*x + b*x^3]) + (3*b^(1/4)*Sqrt[x]*(Sqrt[a] + Sq
rt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[x])/a^(1/4)], 1/2])/(2*a^(
7/4)*Sqrt[a*x + b*x^3])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 2006

Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> -Simp[(a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1)*
x^(j - 1)), x] + Dist[(n*p + n - j + 1)/(a*(n - j)*(p + 1)), Int[(a*x^j + b*x^n)^(p + 1)/x^j, x], x] /; FreeQ[
{a, b}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && LtQ[p, -1]

Rule 2025

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c^(j - 1)*(c*x)^(m - j +
 1)*(a*x^j + b*x^n)^(p + 1))/(a*(m + j*p + 1)), x] - Dist[(b*(m + n*p + n - j + 1))/(a*c^(n - j)*(m + j*p + 1)
), Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] &&  !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]

Rule 2032

Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Dist[(c^IntPart[m]*(c*x)^FracP
art[m]*(a*x^j + b*x^n)^FracPart[p])/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]), Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]

Rubi steps

\begin {align*} \int \frac {1}{\left (a x+b x^3\right )^{3/2}} \, dx &=\frac {1}{a \sqrt {a x+b x^3}}+\frac {3 \int \frac {1}{x \sqrt {a x+b x^3}} \, dx}{2 a}\\ &=\frac {1}{a \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {(3 b) \int \frac {x}{\sqrt {a x+b x^3}} \, dx}{2 a^2}\\ &=\frac {1}{a \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {\left (3 b \sqrt {x} \sqrt {a+b x^2}\right ) \int \frac {\sqrt {x}}{\sqrt {a+b x^2}} \, dx}{2 a^2 \sqrt {a x+b x^3}}\\ &=\frac {1}{a \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {\left (3 b \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{a^2 \sqrt {a x+b x^3}}\\ &=\frac {1}{a \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}+\frac {\left (3 \sqrt {b} \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{a^{3/2} \sqrt {a x+b x^3}}-\frac {\left (3 \sqrt {b} \sqrt {x} \sqrt {a+b x^2}\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx,x,\sqrt {x}\right )}{a^{3/2} \sqrt {a x+b x^3}}\\ &=\frac {1}{a \sqrt {a x+b x^3}}+\frac {3 \sqrt {b} x \left (a+b x^2\right )}{a^2 \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {a x+b x^3}}-\frac {3 \sqrt {a x+b x^3}}{a^2 x}-\frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{a^{7/4} \sqrt {a x+b x^3}}+\frac {3 \sqrt [4]{b} \sqrt {x} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{2 a^{7/4} \sqrt {a x+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 51, normalized size = 0.19 \[ -\frac {2 \sqrt {\frac {b x^2}{a}+1} \, _2F_1\left (-\frac {1}{4},\frac {3}{2};\frac {3}{4};-\frac {b x^2}{a}\right )}{a \sqrt {x \left (a+b x^2\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*x + b*x^3)^(-3/2),x]

[Out]

(-2*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[-1/4, 3/2, 3/4, -((b*x^2)/a)])/(a*Sqrt[x*(a + b*x^2)])

________________________________________________________________________________________

fricas [F]  time = 0.65, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{3} + a x}}{b^{2} x^{6} + 2 \, a b x^{4} + a^{2} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^3 + a*x)/(b^2*x^6 + 2*a*b*x^4 + a^2*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{3} + a x\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^3 + a*x)^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 206, normalized size = 0.75 \[ -\frac {b \,x^{2}}{\sqrt {\left (x^{2}+\frac {a}{b}\right ) b x}\, a^{2}}-\frac {2 \left (b \,x^{2}+a \right )}{\sqrt {\left (b \,x^{2}+a \right ) x}\, a^{2}}+\frac {3 \sqrt {-a b}\, \sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {2 \left (x -\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, \left (-\frac {2 \sqrt {-a b}\, \EllipticE \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}+\frac {\sqrt {-a b}\, \EllipticF \left (\sqrt {\frac {\left (x +\frac {\sqrt {-a b}}{b}\right ) b}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )}{b}\right )}{2 \sqrt {b \,x^{3}+a x}\, a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a*x)^(3/2),x)

[Out]

-x^2*b/a^2/((x^2+a/b)*b*x)^(1/2)-2*(b*x^2+a)/a^2/((b*x^2+a)*x)^(1/2)+3/2/a^2*(-a*b)^(1/2)*((x+(-a*b)^(1/2)/b)/
(-a*b)^(1/2)*b)^(1/2)*(-2*(x-(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)/(b*x^3+a*x)^(1/
2)*(-2*(-a*b)^(1/2)/b*EllipticE(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2))+(-a*b)^(1/2)/b*Elliptic
F(((x+(-a*b)^(1/2)/b)/(-a*b)^(1/2)*b)^(1/2),1/2*2^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b x^{3} + a x\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a*x)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^3 + a*x)^(-3/2), x)

________________________________________________________________________________________

mupad [B]  time = 5.17, size = 40, normalized size = 0.15 \[ -\frac {2\,x\,{\left (\frac {b\,x^2}{a}+1\right )}^{3/2}\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {3}{2};\ \frac {3}{4};\ -\frac {b\,x^2}{a}\right )}{{\left (b\,x^3+a\,x\right )}^{3/2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*x + b*x^3)^(3/2),x)

[Out]

-(2*x*((b*x^2)/a + 1)^(3/2)*hypergeom([-1/4, 3/2], 3/4, -(b*x^2)/a))/(a*x + b*x^3)^(3/2)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a x + b x^{3}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a*x)**(3/2),x)

[Out]

Integral((a*x + b*x**3)**(-3/2), x)

________________________________________________________________________________________